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ABSTRACT 

Estimating the occurrence and expansion of harmful algal blooms (HABs) using 
mathematical modeling tools help to control external nutrient loadings into the aquatic 
system. Predictive tools such as artificial intelligence techniques, particularly multilayer 
perceptron (MLP) model was used in this study to estimate blue-green algae fluorescence 
in freshwaters, in Lake Erie, USA. Blue-green algae are a major environmental concern 
in freshwaters that produce toxins and cause a wide range of problems including oxygen 
depletion, fish kills, harm or death to other aquatic organisms, and subsequent habitat 
loss. Cyanobacteria are a type of blue-green algae that form HABs in water ecosystems. 
In this study, eight input parameters including phosphorous, nitrogen, chlorophyll-a, air 
temperature, water temperature, turbidity, wind speed, and pH were used to run the 
model. Five different learning algorithms were TESTED, and the Levenberg-Marquardt 
algorithm resulted in the highest R2 values of 0.98 and 0.72 for eight, and three 
(phosphorous, nitrogen, and chlorophyll-a) input parameters, respectively. Eight input 
parameters produced the best estimation approach. 
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BACKGROUND 

Over enrichment of freshwaters promote overgrowth of blue-green algae and 
cause eutrophication in water environment. Cyanobacteria are a type of prokaryotic blue-
green algae that can form harmful algal blooms (HABs) in water ecosystems and 
sometimes called CyanoHABs. Some cyanobacteria genera in freshwater, are able to 
produce cyanobacterial metabolites and toxins (cyanotoxins). The cyanotoxins have been 
found to be causes of animal and human poisonings and may have lethal effects on 
aquatic organisms (Ferreira et al., 2001; Anderson et al, 2002; Mohamed and Shehri, 
2010; O’Neil et al. 2012, Li et al., 2016). 

HABs in freshwaters increase the risk to human and animal health, reduces water 
transparency, creates oxygen-deprived aquatic zones, can cause taste and odor problems 
in drinking water, leads to death of plants and fishes, effects biodiversity, and decreases 
the recreational use of water. HABs are especially dangerous in a water body if the water 
is used as a municipal drinking water reservoir where possible cyanotoxins are piped into 
people’s home and used for drinking, cooking, bathing, and other household chores 
(Carpenter et al., 1998; Smith, 1998; Hudnell et al., 2010).  

Nutrient over-enrichment originated by human activity increases the HAB 
occurrence and can lead to eutrophication which has long been cited as a major cause of 
HABs. This abundance of nutrients has been linked to human activities, including 
agricultural and residential uses of fertilizer, application of manure, discharge of 
municipal wastewaters, and inputs from industries (Anderson, 2009). Although P is a 
required macro nutrient in photosynthetic organisms' growth, it exists in small amounts in 
most freshwaters (Anderson et al., 2002). Some species of cyanobacteria are capable of 
providing their own N via N2 fixation; therefore, P is the more limiting nutrient for 
controlling HABs. Besides nutrients, climatic factors also contribute to HABs. HAB 
proliferation was observed in regions where the temperature exceeds the optimal growth 
temperature, which is 25 °C (Paerl et al., 2011). 

Intensification of HAB in freshwaters is not a simple process caused by a single 
event but rather multiple factors occurring simultaneously (Heisler et al., 2008). 
Innovative approaches are needed to prevent HAB occurrence, accumulation, and 
transport in freshwaters. The characteristics of freshwaters (lakes, rivers, streams, and 
reservoirs) are varied based on their hydrologic, geographic, climatic, morphologic, 
physical, chemical, geochemical, and biological features. Therefore, HAB control 
methods will be different in each water environment. For instance, controlling HABs in 
large water bodies are difficult, whereas control of HABs may be more manageable in 
small water environments such a waste pond. External nutrient loading is usually the first 
target to control and prevent HABs in freshwaters even though limiting the nutrients 
might not be a solution in the near future (Hudnell et al., 2010). 

Development of a HAB early-warning system is highly dependent on reliable 
modeling methods that predict the HAB occurrence with high accuracy using current 
water and climate conditions and forecasts. Early warning systems provide practical 
guidance for water treatment plants about future lake contamination by cyanobacteria. In 
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addition, early-warning systems provide critical knowledge for agencies, water utility 
managers and other stakeholders to prevent future hazards caused by algal toxin. In order 
to minimize the impact of HABs in aquatic systems, the past and current situations and 
upcoming forecast should be evaluated using an appropriate model. Consideration of 
available data and sampling or scientific efforts are necessary for selecting the type of 
model to estimate HABs (in terms of blue-green algal fluorescence) in freshwater. The 
most common parameters used for modeling in rivers and streams are nutrient loading, 
water temperature, volumetric flow rate, water current and turbulence, water residence 
times, sunlight exposure, time, and intensity, quiescent or stagnant water, and depth of 
the water (deep or shallow).  

Artificial intelligence techniques, in particular artificial neural network (ANN) 
techniques, have been extensively used in a variety of complex scientific and engineering 
problems to predict and classify environmental systems including system modeling, 
forecasting, hydrology, pattern recognition, sediment transport and accumulation, 
evaporation, evapotranspiration, rainfall, surface runoff, and watershed runoff (Holmberg 
et al., 2006; Paliwal and Kumar, 2009; Cobaner, 2011; Amiryousefi et al., 2011; Simsek 
et al., 2015). However, the application of these techniques to HAB estimation is very 
limited in the literature. Therefore, the objective of this study is to apply the ANN 
techniques, in particular multilayer perceptron (MLP) models to estimate blue-green 
algae in western Lake Erie, USA. MLP is a form of ANN modeling that consists of 
single-layer perceptron. External data in an MLP model is collected by the input layer 
which is known as the first layer. All existing datasets are randomly divided into a 
training (sample) and a testing (non-sampling) dataset. Back-propagation (BP) is 
accepted as a prevalent learning technique for MLP when obtained a training data set.  

DESCRIPTION OF THE CRITICAL STATE OR REGIONAL WATER 
PROBLEM INVESTIGATED 

Toxic blue-green algae bloom (cyanobacteria blooms or HABs) has been 
commonly found in some lakes and rivers in USA. Since the summer months are too hot, 
the HABs grow excessively in freshwaters, which some of them are used as a drinking 
water source. Additionally, HABs in surface waters are harmful for surrounding animals 
and human beings. Advances in environmental monitoring techniques and generating 
extensive and continuous water quality parameters promote using artificial intelligence 
techniques to estimate parameters in freshwaters including cyanobacterial growth and 
nutrient reduction. ANN is an artificial intelligence technique to estimate the performance 
of various biological and chemical systems. Particularly, multilayer perceptron, as a type 
of ANN modeling, technique was used in this study. 

To our knowledge, ANN models were not used to predict blue-green algal blooms in 
freshwater ecosystems. Therefore, this new HAB prediction method could be extended 
and used in all other surface waters in the USA states and territorials.  

SCOPE AND OBJECTIVES 
The objective of this study is to develop artificial intelligence technique models to predict 
HABs and nutrient reduction in freshwater ecosystem. 
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Hypothesis: Artificial intelligence techniques accurately estimate cyanobacterial growth 
and nutrient reduction in the lake and river environment. 

MATERIALS AND METHODS 
Preliminary Study and Data Collection Strategy 

A combination of eight input parameters, including phosphorus (μg/L), nitrogen 
(mg/L), chlorophyll-a (RFU), air temperature (℃), water temperature (℃), turbidity 
(NTU), wind speed (m/s), and pH were used in this study to estimate blue-green algae 
fluorescence in relative fluorescence units (RFU) in western Lake Erie, USA (Table 1). 
Blue-green algae fluorescence may be used as a proxy for measure the cyanobacterial 
abundance of HAB that may turn toxic and is determined with a phycocyanin probe in 
the water or through satellite data. Optical phycocyanin sensors have provided early 
warnings of increased cyanobacteria abundance or elevated toxin concentrations (Brient 
et al., 2008; Marion et al., 2012; McQuaid et al., 2011) and have been used successfully 
in Lake Erie (Francy et al., 2016). Phycocyanin data from satellites are increasingly more 
accurate than chlorophyll-a data in the prediction of HABs (Yan et al., 2018). 

All the input parameters were determined based on the lake’s environmental 
conditions and the data availability. The data were collected real-time in the period of 
from June 30 to October 5 in 2016 and from May 1 to October 26 in 2017, by the 
National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental 
Research Laboratory (GLERL) (NOAA-GLERL, 2018). The GLERL website runs a 
collaborative program, which uses data sharing to understand the environmental factors 
of HABs. To understand the long and short-term periodic changes in HAB occurrence, 
the data was collected using satellite images, remote sensing techniques, buoys, and an 
exhaustive observation and sample collection program in Lake Erie during the algal 
bloom season. The data was saved using the PostgreSQL database management system, 
which is a powerful, open source object-relational database system. To develop an MLP 
model in this study, a large number of input data sets, which were about 13,300 data 
points from each parameter were processed to run the MLP model and the statistical 
analyses are presented the Appendix at Table A1. This table presents the distribution of 
the values of eight input parameters for training-only, testing-only and for all the data. 

Model Development 

The ANN model uses computer-based algorithms that can be trained to identify 
and classify complex patterns (Khan et al., 2001). The models have an input layer, hidden 
layer(s) and an output layer. All the computations are made in the hidden layers. 
Training, testing, and validation processes (machine learning systems) are used to 
confirm the models’ performance (Takagi and Sugeno, 1985; Simsek, 2016). ANNs are 
classified according to the number of layers, nodes in each layer, and the way these nodes 
are connected to each other (Zhang et al., 1999). The network forms the model formula in 
the output layer, which is the last layer. Hidden layers are crucial for ANNs to define the 
complicated model data between the input and output layers. All the nodes in these layers 
are connected to each other from the lowest layer upwards (Zhang et al., 1999).  
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Completely connected, feed-forward BP neural network models were used in the 
ANN network with five different learning algorithms including Levenberg-Marquard 
(LM), Bayesian regularization (BR), conjugate gradient function (CGF), resilient back-
propagation (RBP), and scaled conjugate gradient (SCG). A BP algorithm is a graphical 
approach that is used in ANNs to calculate a gradient of the error functions. A BP 
algorithm is commonly used to optimize the feed forward neural networks. A typical 
architecture of MLP structure is presented in Fig. 1. 

 

Figure 1. A schematic diagram of multilayer perceptron (MLP) structure with inputs, 
hidden layers and an output layer.  

The BP network has a simple structure with a strong simulation capability and 
consists of two phases, which are a feed forward and backward phases. The feed forward 
phase sends external input information forward to the output node, and the second phase 
arranges to the connection strengths according to the discrepancy between the calculated 
and viewed information at the output unit (Cigizoglu and Alp, 2006; Goh, 1995). In BP 
neural networks, the mathematical relationships between the variables are not specified. 
Instead, they learn from the examples fed to them. Since there is no mathematical 
connection between the variables, BP neural networks learn from cases that they 
obtained.  

The LM algorithm is a variation of Newton’s method and derives from the error 
BP algorithm (Lourakis, 2005; Suratgar et al., 2007). The LM algorithm identifies the 
minimum function denoted as the sum of the squares of non-linear functions (Lourakis, 
2005). Several approaches could be used in the LM method to accelerate the error BP 
algorithm, but most of these methods achieved minimally acceptable results in the 
literature. Even though LM has a high-speed algorithm, it is not capable of minimizing 
error oscillation. Nevertheless, only the LM algorithm provides a fair exchange between 
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the speed of the Newton algorithm and the determination of the steepest descent method 
(Suratgar et al., 2007). 

Gradient-based learning methods are used as error reducing techniques to train BP 
nets (Bayati et al., 2009). BR is a mathematical technique that is improved to transform 
non-linear systems into ‘‘well posed’’ problems to minimize the potential for overfitting 
which causes a deficiency of generalization of the network (Saini, 2008).  

RBP is a learning technique, which makes a direct adjustment of the weight step 
based on local gradient information. In RBP, it’s adaptation is not blurred by gradient 
behavior and it is almost 100 times faster than the simple BP technique because it 
depends on the sign of the derivative instead of the value of the derivative (Naoum et al., 
2013; Saini, 2008). CGF, which uses orthogonal and linearly independent non-zero 
vectors, can be used as a method to reduce the network output error in conjugate 
directions (Man-Chung et al., 2000). SCG belongs to the class of conjugate gradient 
methods. SCG is faster than second order algorithms since it uses a step size scaling 
mechanism, which runs quickly for line-search per learning iteration (Orozco and García, 
2003). 

In order to explain the performance of training, testing and validation processes, 
some statistical calculations are necessary such as root mean square error (RMSE), mean 
absolute error (MAE), mean bias error (MBE), and coefficient of determination (R2). The 
RMSE describes a short-term performance of a model by ensuring each unit compares to 
the real difference between the estimated value and the obtained value (Sanusi et al., 
2013). The MBE describes the long-term behavior of a model, and at positive value 
indicates the average overestimate of the predicted value, whereas a negative value 
indicates the average underestimate of the predicted value (Jacovides and Kontoyiannis, 
1995; Sanusi et al., 2013). The RMSE value is expected to be as small as possible for a 
better result, similar to an MBE value (Sanusi et al., 2013). MBE, RMSE and MAE can 
be calculated using Eqs. 1, 2 and 3, respectively.  

MBE = ∑ (𝑝𝑖−𝑟𝑖)𝑛
𝑖=1

𝑛
        (1) 

RMSE = √
∑ (𝑝𝑖−𝑟𝑖)2𝑛

𝑖=1

𝑛
       (2) 

MAE = ∑ |pi−ri|𝑛
𝑖=1

𝑛
        (3) 

Where, i is an index; pi is the predicted value for ith datum; ri is the real value for 
ith datum; and n is the observation number or sample size (Sanusi et al., 2013). The 
definition of the data set consists of a sequence of operations; the transmission functions 
are first assigned to a network layer to identify the input signals, and then the appropriate 
weight is calculated for the output signal. Logsig, tansig and purelin are the linear transfer 
functions that are used commonly in Matlab software. According to the ranges of these 
transfer functions, input and output data are normalized (Mohamed Ismail et al., 2012). 
The formula used for these three functions are presented in Eqs. 4, 5, and 6.  
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𝐿𝑜𝑔𝑠𝑖𝑔(𝑛) =  
1

1+𝑒−𝑛
         (4) 

𝑇𝑎𝑛𝑠𝑖𝑔(𝑛) =  
2

(1+𝑒(−2𝑛))−1
         (5) 

𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝑛) = 𝑛         (6) 

Five different MLP models were designed to estimate blue-green algae 
accumulation based on fluorescence values (Table 1). The first four models contained air 
temperature and water temperature data since these two parameters are important factors 
in the lake environment that promote algal growth (Fu et al., 2012; Wei et al., 2001). 

Table 1. MLP models for estimation of blue-green algae fluorescence, a proxy for a 
harmful algal bloom (HAB). 

Model İnput Output 
1 2 3 4 5 6 7 8 

MLP1 air 
temperature 

water 
temperature 

wind 
speed pH turbidity chl-a P N HAB 

MLP2 air 
temperature 

water 
temperature 

wind 
speed pH turbidity    HAB 

MLP3 air 
temperature 

water 
temperature 

wind 
speed pH     HAB 

MLP4 air 
temperature 

water 
temperature 

wind 
speed      HAB 

MLP5 P N chl-a      HAB 
Note: The units are: P (μg/L), N (mg/L), chl-a (chlorophyll-a, relative fluorescence units, RFU), air 
temperature (℃), water temperature (℃), turbidity nephelometric turbidity units (NTU), wind speed (m/s), 
and HAB stands for blue-green algae fluorescence (RFU). MLP: Multilayer perceptron. 
 
Table 2. Network structure used in MLP models for both training and testing data sets. 

Model Network structure 
MLP1 8-10-1 8-12-1 8-15-1 8-10-15-1 
MLP2 5-7-1 5-9-1 5-7-9-1 - 
MLP3 4-5-1 4-7-1 4-5-7-1 - 
MLP4 3-5-1 3-7-1 3-5-7-1 - 
MLP5 3-5-1 3-7-1 3-5-7-1 - 
Note: MLP: Multilayer perceptron. The table explains five different MLP models with their network 
structures. First number represents the number of input parameters and the last number, which is 1, 
represents the output parameter. The other one or sometimes two numbers between first and second 
numbers are the hidden layer structures.  

All five MPL models were divided into their network structure as presented in 
Table 2. There were only 8, 5, 4, and 3 different inputs applied in this study. Some of the 
network structures had one hidden layer, whereas others had more. Commonly, MLP 
models contain several layers of neurons in their network structure and each neuron 
receives input data. The input layer does not have any mission about calculation or 
computation in the neural structure, its role is transferring the input vector to the network 
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vector. The input and output vectors in the system represent the inputs and the output of 
the MLP models and they can be represented as single vectors (Gardner and Dorling, 
1998).  

RESULTS AND DISCUSSION 

Blue-green algae fluorescence was estimated using five different MLP models 
(Table 1) with various network structures (Table 2) in each model and only the best 
estimation models were presented in this study. The lake parameters for the MLP models 
were selected based on the lake’s environmental, ecological, and climatic conditions. 
Among all the MLP models, the highest R2 values (≤0.98) for both training and testing 
data sets were obtained by MLP1 model, which used eight input parameters to stimulate 
HAB occurrence in Lake Erie as shown in the Fig. 2a and b and in Table 3. The best 
learning algorithm was LM and the best network structure was 8-10-15-1 for the eight 
input parameters. The best ANN transfer functions of tansig-tansig-purelin for both 
training and testing data sets were also observed in 8-10-15-1 network structures. The 
detail training and testing results for eight input parameters for MLP1 models are 
presented at Table A2 and A3. In general, good performance was achieved as indicated 
by small values of RMSE, MBE, and MAE as well as large values of R2 (Jacovides and 
Kontoyiannis, 1995). These results showed that we were able to forecast blue-green algae 
fluorescence with MLP models, which could lead to early mitigation and thus reduce 
human health risks and ecological effects of toxic algae. 

Among all the MLP models, the highest coefficient of determination values 
(≤0.98) for both training and testing data sets were obtained at MLP1 model, which used 
eight input parameters to stimulate HAB occurrence in Lake Erie as shown in the Figure 
2a and b and in the  

Table 3. The best learning algorithm was LM and the best network structure was 
8-10-15-1 for the eight input parameters. The best ANN transfer functions of tansig-
tansig-purelin for both training and testing data sets were also observed in 8-10-15-1 
network structures. The detailed of training and testing results for eight input parameters 
for MLP1 models are presented at Table A2 and A3. In general, good performance was 
achieved as indicated by small values of RMSE, MBE, and MAE as well as large values 
of R2 (Jacovides and Kontoyiannis, 1995). These results showed that we were able to 
forecast blue-green algae fluorescence with MLP models, which could lead to early 
mitigation and thus reduce human health risks and ecological effects of toxic algae. 

Even though eight input structures showed the best estimation of blue-green algae 
fluorescence, this model might not be feasible in real-world applications since it will be 
time consuming and costly to obtain all eight parameters. Hence, three, four, and five 
input parameters were tested as well in this study. 
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Table 3. The summary of MLP1, MLP2 and MLP3 model statistics for training and testing data set.  

MLP1 

Network 
structure Activation Learning 

algorithm 
Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 
8-10-15-1 Tansig-tansing-purelin LM 0 0.02 0.03 0.98 0.00 0.04 0.05 0.98 
8-10-15-1 Tansig-logsig-purelin BR 0 0.02 0.03 0.98 0.00 0.04 0.05 0.98 

8-15-1 Tansig-purelin CGF 0 0.05 0.07 0.91 -0.01 0.08 0.11 0.91 
8-12-1 Logsig-purelin RP 0 0.06 0.07 0.91 -0.01 0.08 0.11 0.90 
8-15-1 Logsig-purelin SCG 0 0.05 0.07 0.92 -0.01 0.07 0.10 0.91 

 
MLP2 

Network 
structure Activation Learning 

algorithm 
Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 
5-7-9-1 Logsig-tansig-purelin LM -0.01 0.06 0.09 0.88 0.01 0.08 0.12 0.89 
5-7-9-1 Tansig-logsig-purelin BR 0 0.06 0.08 0.88 0.01 0.08 0.12 0.89 
5-9-1 Logsig-purelin CGF -0.02 0.09 0.14 0.71 0.05 0.13 0.18 0.81 

5-7-9-1 Logsig-tansig-purelin RP -0.02 0.08 0.12 0.79 0.05 0.13 0.19 0.77 
5-7-1 Tansig-purelin SCG -0.02 0.09 0.13 0.74 0.04 0.13 0.19 0.79 

 
MLP3 

Network 
structure Activation Learning 

algorithm 
Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 
4-5-7-1 Logsig-tansig-purelin LM -0.01 0.09 0.12 0.76 0.02 0.1 0.15 0.82 
4-5-7-1 Logsig-tansig-purelin BR -0.01 0.09 0.12 0.75 0.03 0.12 0.17 0.78 
4-5-7-1 Logsig-tansig-purelin CGF -0.02 0.11 0.16 0.61 0.04 0.15 0.21 0.68 
4-5-7-1 Tansig-tansing-purelin RP -0.01 0.1 0.15 0.62 0.03 0.14 0.2 0.72 
4-5-7-1 Logsig-tansig-purelin SCG -0.01 0.11 0.15 0.65 0.03 0.14 0.2 0.72 

Note: [LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient backpropogation; SCG, scaled conjugate gradient; 
MBE, mean bias error; MAE, mean absolute error; RMSE, root mean square error; R2, coefficient of determination]. MLP: Multilayer perceptron. Bold numbers 
were selected as the best results and their figures were presented in this study. Bold numbers were selected as the best results and their figures were presented in 
this study. 
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Figure 2. MLP1 model for measured and estimated blue-green algae fluorescence, as a 
surrogate for harmful algal blooms (HAB) (a) training and (b) testing data sets (MLP: 
Multilayer perceptron, LM: Levenberg-Marquardt). 

Table 3 shows the best estimation of MLP modeling results for five and four input 
parameters (MLP2 and MLP3) using five different transfer functions. Five different 
learning algorithms were applied, and the best estimations of blue-green algae 
fluorescence were obtained at LM and BR algorithm with 0.89 R2 values in both 
algorithms. Only the selected algorithms were presented in Table 3 and Figure 3 for both 
training and testing data sets. LM algorithm was one of the fastest medium-sized 
feedforward algorithms with a set of simple interconnected units (neurons or nodes) 
(Karul et al., 2000). Five input parameters produced little better estimation with R2 values 
of 0.88 for training data sets compared to four input parameters which produced 0.76 R2 
values for training data sets.  
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Figure 3. MLP2 model (a) training and (b) testing data sets; MLP3 model (c) training 
and (d) testing data sets (MLP: Multilayer perceptron, LM: Levenberg-Marquardt). 

Two sets of three input parameters were designed (MLP4 and MLP5) to 
determine the best blue-green algae fluorescence estimation although the network 
structures and transfer algorithms used are the same (Table 4). In MLP4, the input factors 
are air temperature, water temperature and wind speed while in MLP5, the input factors 
are phosphorus, nitrogen and chl-a. In both models, the training and testing modeling 
results for the LM and BR learning algorithms are similar and only the LM algorithm was 
presented in Fig. 4 for both MLP4 and MLP5 models. However, the input parameters for 
MLP5 (nutrients and chlorophyll concentrations) are vital since nitrogen and 
phosphorous are essential nutrient sources for HAB formation and they are essential to 
the productivity of HABs in aquatic ecosystem. Optimal amounts of nutrients are 
important to support aquatic life; however, in high concentrations they can be 
detrimental. This is supported in the research where natural and/or anthropogenic nutrient 
over enrichment of a water body increased algal abundance (Paerl and Huisman, 2009). 
Abundance of cyanobacteria, chlorophytes, and cryptophytes increased after nutrient 
addition to (Lake Taihu, China); whereas diatoms showed a slower abundance response 
than the other algal groups (Paerl et al., 2015).  
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Optimal amounts of nutrients are important to support aquatic life; however, in 
high concentrations they can be detrimental. This is supported in the research where 
natural and/or anthropogenic nutrient over enrichment of water body promotes 
proliferation of HABs (Paerl and Huisman, 2009); different type of HABs including 
cyanobacteria, chlorophytes, and cryptophytes grew well under nutrient addition to a lake 
(Lake Taihu, China); whereas diatoms were moderately stimulated by the nutrient 
loading (Paerl et al., 2015).  

The coefficient of determination (R2) values of the MLP5 model (nutrient and 
chlorophyll inputs) were low (0.46 and 0.72) in training and testing data sets, 
respectively. Overall, the amount of phosphorous in the lake was low, in microgram per 
liter level. Out of 13,300 data points for phosphorous (concentrations), the values of 
about 900 data points were less than 1.0 μg/L, (Fig. A1). About 7,100 phosphorous data 
points were under 10.0 μg/L and there were only 450 data points in between 100 and 146 
μg/L. Similarly, nitrogen values were also low in the lake, however at least they were at 
the mg/L level. The distribution of nitrogen data was as follows; the nitrogen 
concentration of about 4,880 data points were under 0.5 mg/L, about 2120 data points 
were in between 0.5 and 1.0 mg/L, and about 6,300 data points were in between 1.0 and 
4.8 mg/L. Since blue-green fluorescence and nutrient concentration in the lake has a 
negative relationship, it would be expected to measure low phosphorous and nitrogen 
concentrations in the lake when blue-green algae fluorescence is high. When the data 
were analyzed based on the summer season, the concentrations of phosphorous and 
nitrogen parameters decreased through the end of the summer (September and October) 
in both years (2016 and 2017) even though the concentrations of these two nutrients 
fluctuate during the beginning and middle of the summer. A better understanding of lake-
wide nutrient input and its utilization by HABs or other organisms could be determined to 
create more accurate prediction results. 
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Table 4. The summary of MLP4 and MLP5 model statistics for training and testing data set. 
MLP4 

Network 
structure Activation Learning 

algorithm 
Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 
3-5-7-1 Tansig-logsig-purelin LM 0.01 0.09 0.13 0.7 -0.02 0.12 0.16 0.81 
3-5-7-1 Tansig-logsig-purelin BR 0.01 0.09 0.13 0.71 -0.01 0.12 0.16 0.81 
3-7-1 Tansig-purelin CGF -0.02 0.13 0.18 0.73 -0.02 0.13 0.18 0.73 
3-5-1 Tansig-purelin RP -0.02 0.14 0.19 0.73 -0.02 0.14 0.19 0.73 
3-5-1 Tansig- purelin SCG -0.02 0.13 0.17 0.76 -0.02 0.13 0.17 0.76 
 

MLP5 

Network 
structure Activation Learning 

algorithm 

Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 

3-5-7-1 Tansig-tansing-purelin LM -0.01 0.13 0.18 0.46 0.03 0.12 0.19 0.72 
3-5-7-1 Tansig-logsig-purelin BR -0.01 0.13 0.18 0.45 0.03 0.12 0.19 0.72 
3-5-7-1 Tansig-tansing-purelin CGF -0.02 0.15 0.21 0.29 0.04 0.17 0.24 0.57 
3-7-1 Logsig-purelin RP -0.02 0.14 0.2 0.37 0.04 0.14 0.21 0.67 
3-5-7-1 Tansig-tansing-purelin SCG -0.02 0.15 0.21 0.31 0.04 0.17 0.24 0.6 

Note: [LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient backpropagation; SCG, scaled conjugate gradient; 
MBE, mean bias error; MAE, mean absolute error; RMSE, root mean square error; R2, coefficient of determination]. MLP: Multilayer perceptron. Bold numbers 
were selected as the best results and their figures were presented in this study. 
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Figure 4. MLP4 model (a) training and (b) testing; MLP5 model (c) training and (d) testing data 
sets estimating of blue-green algae fluorescence as a surrogate for harmful algal blooms (HAB) 
(MLP: Multilayer perceptron, LM: Levenberg-Marquardt).  

CONCLUSIONS 

In this study, five different Multilayer perceptron (MLP) models with five different 
activation functions including LM, BR, CGF, RP, and SCG were developed to estimate blue-
green algae fluorescence as a surrogate for the occurrence of HABs in western Lake Erie. The 
best estimation of blue-green algae fluorescence was achieved using eight different input 
parameters, which were phosphorus, nitrogen, chlorophyll-a, air temperature, water temperature, 
turbidity, wind speed, and pH (MLP1 model). Two of the models, MLP3 and MLP4 proved that 
the blue-green algae occurrence in the lake could be predicted quickly and cost effectively with 
simple field measurements of air and water temperature, wind speed and pH (MLP4 only). 
Therefore, using only these two models could help to create an early warning system to indicate 
the likelihood of a HAB more efficiently and cost effectively than MLP1.  

Phosphorus, chlorophyll-a, and nitrogen input parameters provided weak correlation 
(MLP5) even though, nutrients and algal proliferation tend to correlate in many systems 
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(Carpenter et al., 1998). However, having more than 2 years’ data might give better estimation 
using nutrient parameters. Overall, the ANN modeling approach described here proved that, 
developing and implementing MLP models to provide accurate forecasting of blue-green algae 
fluorescence depends on appropriate and representative data measurements in the lake 
environment. Determining physical, ecological, biological and chemical parameters of the lake 
would improve the forecast capability of the model. Harmful algal blooms are a growing concern 
for lake management and estimating blue-green algae fluorescence as a surrogate for the 
occurrence of HABs can be a key planning element for lake environment and hydrological 
studies; use of neuro computing techniques offer new opportunities for rapid estimation of HABs 
in freshwaters. 
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APPENDIX 
 
Table A1. Statistical analysis of the data used to run Multilayer perceptron model  

 

Parameters Average Minimum Maximum Standard  
Error 

Standard  
Deviation Skeness Kurtosis 

Tr
ai

ni
ng

 d
at

a 
se

ts
 

Phosphorus, μg/L 30.61 0.1 146.4 0.45 37.88 -0.18 1.07 

Nitrogen, mg/L 1.97 0.02 4.87 0.02 1.33 -1.29 0.3 

Chlorophyll-a, RFU 1.81 0 13.99 0.02 2.05 5.36 2.29 

Air Temperature, ˚C 19.12 1.89 32.56 0.07 5.73 -0.24 -0.65 

Water Temperature, ˚C 20.74 10.83 28.21 0.05 4.59 -0.97 -0.56 

Turbidity, NTU 21.49 1.22 208.8 0.34 28.36 2.71 1.82 

Wind Speed, m/s  5.26 0.22 14.01 0.03 2.35 0.13 0.55 

pH 8.37 7.52 9.23 0 0.33 -0.51 0.38 

Blue-Green Algae, RFU 0.31 0 1.24 0 0.24 0.68 1.03 

Te
st

in
g 

da
ta

 se
ts

 

Phosphorus, μg/L 5.65 0.1 37.5 0.11 6.11 8.72 2.67 

Nitrogen, mg/L 0.8 0.03 3.19 0.01 0.72 0.16 0.87 

Chlorophyll-a, RFU 1.25 0.15 12.92 0.03 1.55 11.03 3.11 

Air Temperature, ˚C 17.69 4.72 27.86 0.09 4.79 -0.23 -0.62 

Water Temperature, ˚C 20.8 13.6 26.46 0.07 3.74 -1.43 -0.32 

Turbidity, NTU 11.59 1.67 115.4 0.24 13.38 14.69 3.51 

Wind Speed, m/s 5.72 0.33 14.24 0.05 2.74 -0.09 0.59 

pH 8.41 7.9 9.28 0 0.25 -0.65 0.43 

Blue-Green Algae, RFU 0.39 0 2.14 0.01 0.35 2.24 1.6 

A
ll 

da
ta

 

Phosphorus, μg/L 21.34 0.1 146.4 0.31 32.65 1.85 1.74 

Nitrogen, mg/L 1.56 0.02 4.87 0.01 1.28 -0.71 0.69 

Chlorophyll-a, RFU 1.69 0 15.75 0.02 1.96 6.34 2.41 

Air Temperature, ˚C 18.95 1.89 32.56 0.05 5.44 -0.19 -0.63 

Water Temperature, ˚C 21 10.83 28.21 0.04 4.28 -0.87 -0.6 

Turbidity, NTU 17.93 1.22 208.8 0.23 24.54 5.2 2.31 

Wind Speed, m/s 5.31 0.22 14.24 0.02 2.5 0.14 0.62 

pH 8.42 7.52 9.39 0 0.33 -0.64 0.28 

Blue-Green Algae, RFU 0.36 0 2.59 0 0.32 4.06 1.72 
 
 
[g/L, micrograms per liter; mg/L, milligrams per liter; RFU, relative fluorescence units; ˚C, degrees Celsius; NTU, 
nephelometric turbidity units; m/s, meters per second].  
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Table A2. Training data set for the Multiplayer perceptron (MLP)1 model.  

Network 
structure Activation 

LM BR CGF RP SCG 

MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE R2 

8-10-1 

Tansig-
purelin 0 0.04 0.05 0.95 0.01 0.05 0.07 0.92 0.01 0.06 0.08 0.88 0.01 0.06 0.09 0.88 0.01 0.05 0.07 0.91 

Logsig-
purelin 0 0.04 0.05 0.96 0 0.04 0.05 0.95 0.01 0.07 0.1 0.84 0.01 0.06 0.09 0.86 0 0.07 0.1 0.83 

8-12-1 

Tansig-
purelin 0 0.04 0.05 0.95 0 0.04 0.06 0.95 0.01 0.06 0.09 0.86 0 0.06 0.08 0.89 0 0.06 0.08 0.89 

Logsig-
purelin 0 0.04 0.06 0.94 0 0.04 0.05 0.96 0.01 0.06 0.09 0.87 0 0.06 0.07 0.91 0 0.06 0.08 0.9 

8-15-1 

Tansig-
purelin 0 0.03 0.05 0.96 0 0.03 0.04 0.97 0 0.05 0.07 0.91 0.01 0.08 0.11 0.81 0 0.06 0.08 0.9 

Logsig-
purelin 0 0.04 0.05 0.96 0 0.04 0.05 0.96 0.01 0.07 0.09 0.86 0 0.05 0.07 0.91 0 0.05 0.07 0.92 

8-10-15-1 

Tansig-
tansing-
purelin 

0 0.02 0.03 0.98 0 0.02 0.03 0.98 0 0.06 0.09 0.87 0 0.06 0.08 0.89 0 0.05 0.07 0.91 

Tansig-
logsig-
purelin 

0 0.02 0.03 0.98 0 0.02 0.03 0.98 0.01 0.04 0.06 0.94 0.01 0.05 0.07 0.91 0 0.05 0.07 0.91 

[LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient backpropogation; SCG, scaled conjugate gradient; 
MBE, mean bias error; MAE, mean absolute error; RMSE, root mean square error; R2, coefficient of determination]. Bold numbers were selected as the best results 
and their figures were presented in this study. 
 
  



 

25 

Table A3. Testing data set for the Multilayer perceptron (MLP) model. 

Network 
structure Activation 

LM BR CGF RP SCG 

MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE R2 

8-10-1 

Tansig-
purelin -0.01 0.06 0.08 0.94 -0.01 0.07 0.09 0.93 -0.01 0.11 0.15 0.83 -0.01 0.10 0.14 0.85 -0.02 0.10 0.13 0.87 

Logsig-
purelin -0.01 0.06 0.08 0.95 0.00 0.06 0.08 0.95 -0.01 0.10 0.13 0.87 -0.01 0.11 0.15 0.83 -0.01 0.11 0.16 0.80 

8-12-1 

Tansig-
purelin -0.01 0.06 0.08 0.94 -0.01 0.07 0.09 0.94 -0.01 0.11 0.16 0.80 -0.01 0.10 0.13 0.87 -0.01 0.09 0.13 0.87 

Logsig-
purelin -0.01 0.07 0.09 0.94 -0.01 0.06 0.07 0.96 -0.01 0.09 0.12 0.88 -0.01 0.08 0.11 0.90 -0.01 0.09 0.12 0.89 

8-15-1 

Tansig-
purelin 0.00 0.05 0.07 0.96 -0.01 0.05 0.07 0.96 -0.01 0.08 0.11 0.91 -0.02 0.11 0.15 0.84 -0.01 0.09 0.12 0.89 

Logsig-
purelin 0.00 0.06 0.08 0.95 0.00 0.06 0.08 0.95 -0.02 0.10 0.14 0.85 -0.01 0.08 0.11 0.90 -0.01 0.07 0.10 0.91 

8-10-15-1 

Tansig-
tansing-
purelin 

0.00 0.04 0.05 0.98 0.00 0.04 0.06 0.97 -0.01 0.08 0.13 0.88 -0.01 0.07 0.09 0.93 -0.01 0.08 0.10 0.93 

Tansig-
logsig-
purelin 

0.00 0.04 0.06 0.98 0.00 0.04 0.05 0.98 -0.01 0.06 0.09 0.94 -0.01 0.07 0.09 0.94 -0.01 0.07 0.10 0.92 

[LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient backpropogation; SCG, scaled conjugate gradient; 
MBE, mean bias error; MAE, mean absolute error; RMSE, root mean square error; R2, coefficient of determination]. Bold numbers were selected as the best results 
and their figures were presented in this study. 
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	ABSTRACT 
	Estimating the occurrence and expansion of harmful algal blooms (HABs) using mathematical modeling tools help to control external nutrient loadings into the aquatic system. Predictive tools such as artificial intelligence techniques, particularly multilayer perceptron (MLP) model was used in this study to estimate blue-green algae fluorescence in freshwaters, in Lake Erie, USA. Blue-green algae are a major environmental concern in freshwaters that produce toxins and cause a wide range of problems including 
	  
	ACKNOWLEDGMENTS 
	Stipend supports for the Research Fellow, Haci Osman Guzel, were provided by the North Dakota Water Resources Research Institute, North Dakota Agricultural Experiment Station, and Turkish Government (YLSY program) - Ministry of Education. These funding supports are thankfully acknowledged.   
	Thanks to National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) (NOAA-315 GLERL, 2018) for providing the data. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NDWRRI, NDAES, or NOAA-GLERL. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.  Government. 
	  
	BACKGROUND 
	Over enrichment of freshwaters promote overgrowth of blue-green algae and cause eutrophication in water environment. Cyanobacteria are a type of prokaryotic blue-green algae that can form harmful algal blooms (HABs) in water ecosystems and sometimes called CyanoHABs. Some cyanobacteria genera in freshwater, are able to produce cyanobacterial metabolites and toxins (cyanotoxins). The cyanotoxins have been found to be causes of animal and human poisonings and may have lethal effects on aquatic organisms (Ferr
	HABs in freshwaters increase the risk to human and animal health, reduces water transparency, creates oxygen-deprived aquatic zones, can cause taste and odor problems in drinking water, leads to death of plants and fishes, effects biodiversity, and decreases the recreational use of water. HABs are especially dangerous in a water body if the water is used as a municipal drinking water reservoir where possible cyanotoxins are piped into people’s home and used for drinking, cooking, bathing, and other househol
	Nutrient over-enrichment originated by human activity increases the HAB occurrence and can lead to eutrophication which has long been cited as a major cause of HABs. This abundance of nutrients has been linked to human activities, including agricultural and residential uses of fertilizer, application of manure, discharge of municipal wastewaters, and inputs from industries (Anderson, 2009). Although P is a required macro nutrient in photosynthetic organisms' growth, it exists in small amounts in most freshw
	Intensification of HAB in freshwaters is not a simple process caused by a single event but rather multiple factors occurring simultaneously (Heisler et al., 2008). Innovative approaches are needed to prevent HAB occurrence, accumulation, and transport in freshwaters. The characteristics of freshwaters (lakes, rivers, streams, and reservoirs) are varied based on their hydrologic, geographic, climatic, morphologic, physical, chemical, geochemical, and biological features. Therefore, HAB control methods will b
	Development of a HAB early-warning system is highly dependent on reliable modeling methods that predict the HAB occurrence with high accuracy using current water and climate conditions and forecasts. Early warning systems provide practical guidance for water treatment plants about future lake contamination by cyanobacteria. In 
	addition, early-warning systems provide critical knowledge for agencies, water utility managers and other stakeholders to prevent future hazards caused by algal toxin. In order to minimize the impact of HABs in aquatic systems, the past and current situations and upcoming forecast should be evaluated using an appropriate model. Consideration of available data and sampling or scientific efforts are necessary for selecting the type of model to estimate HABs (in terms of blue-green algal fluorescence) in fresh
	Artificial intelligence techniques, in particular artificial neural network (ANN) techniques, have been extensively used in a variety of complex scientific and engineering problems to predict and classify environmental systems including system modeling, forecasting, hydrology, pattern recognition, sediment transport and accumulation, evaporation, evapotranspiration, rainfall, surface runoff, and watershed runoﬀ (Holmberg et al., 2006; Paliwal and Kumar, 2009; Cobaner, 2011; Amiryousefi et al., 2011; Simsek 
	DESCRIPTION OF THE CRITICAL STATE OR REGIONAL WATER PROBLEM INVESTIGATED 
	Toxic blue-green algae bloom (cyanobacteria blooms or HABs) has been commonly found in some lakes and rivers in USA. Since the summer months are too hot, the HABs grow excessively in freshwaters, which some of them are used as a drinking water source. Additionally, HABs in surface waters are harmful for surrounding animals and human beings. Advances in environmental monitoring techniques and generating extensive and continuous water quality parameters promote using artiﬁcial intelligence techniques to estim
	To our knowledge, ANN models were not used to predict blue-green algal blooms in freshwater ecosystems. Therefore, this new HAB prediction method could be extended and used in all other surface waters in the USA states and territorials.  
	SCOPE AND OBJECTIVES 
	The objective of this study is to develop artificial intelligence technique models to predict HABs and nutrient reduction in freshwater ecosystem. 
	Hypothesis: Artificial intelligence techniques accurately estimate cyanobacterial growth and nutrient reduction in the lake and river environment. 
	MATERIALS AND METHODS 
	Preliminary Study and Data Collection Strategy 
	A combination of eight input parameters, including phosphorus (μg/L), nitrogen (mg/L), chlorophyll-a (RFU), air temperature (℃), water temperature (℃), turbidity (NTU), wind speed (m/s), and pH were used in this study to estimate blue-green algae fluorescence in relative fluorescence units (RFU) in western Lake Erie, USA (Table 1). Blue-green algae fluorescence may be used as a proxy for measure the cyanobacterial abundance of HAB that may turn toxic and is determined with a phycocyanin probe in the water o
	All the input parameters were determined based on the lake’s environmental conditions and the data availability. The data were collected real-time in the period of from June 30 to October 5 in 2016 and from May 1 to October 26 in 2017, by the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) (NOAA-GLERL, 2018). The GLERL website runs a collaborative program, which uses data sharing to understand the environmental factors of HABs. To understand the l
	Model Development 
	The ANN model uses computer-based algorithms that can be trained to identify and classify complex patterns (Khan et al., 2001). The models have an input layer, hidden layer(s) and an output layer. All the computations are made in the hidden layers. Training, testing, and validation processes (machine learning systems) are used to confirm the models’ performance (Takagi and Sugeno, 1985; Simsek, 2016). ANNs are classified according to the number of layers, nodes in each layer, and the way these nodes are con
	Completely connected, feed-forward BP neural network models were used in the ANN network with five different learning algorithms including Levenberg-Marquard (LM), Bayesian regularization (BR), conjugate gradient function (CGF), resilient back-propagation (RBP), and scaled conjugate gradient (SCG). A BP algorithm is a graphical approach that is used in ANNs to calculate a gradient of the error functions. A BP algorithm is commonly used to optimize the feed forward neural networks. A typical architecture of 
	 

	Figure
	Figure 1. A schematic diagram of multilayer perceptron (MLP) structure with inputs, hidden layers and an output layer.  
	Figure 1. A schematic diagram of multilayer perceptron (MLP) structure with inputs, hidden layers and an output layer.  
	The BP network has a simple structure with a strong simulation capability and consists of two phases, which are a feed forward and backward phases. The feed forward phase sends external input information forward to the output node, and the second phase arranges to the connection strengths according to the discrepancy between the calculated and viewed information at the output unit (Cigizoglu and Alp, 2006; Goh, 1995). In BP neural networks, the mathematical relationships between the variables are not specif
	The LM algorithm is a variation of Newton’s method and derives from the error BP algorithm (Lourakis, 2005; Suratgar et al., 2007). The LM algorithm identifies the minimum function denoted as the sum of the squares of non-linear functions (Lourakis, 2005). Several approaches could be used in the LM method to accelerate the error BP algorithm, but most of these methods achieved minimally acceptable results in the literature. Even though LM has a high-speed algorithm, it is not capable of minimizing error osc
	the speed of the Newton algorithm and the determination of the steepest descent method (Suratgar et al., 2007). 
	Gradient-based learning methods are used as error reducing techniques to train BP nets (Bayati et al., 2009). BR is a mathematical technique that is improved to transform non-linear systems into ‘‘well posed’’ problems to minimize the potential for overfitting which causes a deficiency of generalization of the network (Saini, 2008).  
	RBP is a learning technique, which makes a direct adjustment of the weight step based on local gradient information. In RBP, it’s adaptation is not blurred by gradient behavior and it is almost 100 times faster than the simple BP technique because it depends on the sign of the derivative instead of the value of the derivative (Naoum et al., 2013; Saini, 2008). CGF, which uses orthogonal and linearly independent non-zero vectors, can be used as a method to reduce the network output error in conjugate directi
	In order to explain the performance of training, testing and validation processes, some statistical calculations are necessary such as root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and coefficient of determination (R2). The RMSE describes a short-term performance of a model by ensuring each unit compares to the real difference between the estimated value and the obtained value (Sanusi et al., 2013). The MBE describes the long-term behavior of a model, and at positive value
	MBE = ∑(𝑝𝑖−𝑟𝑖)𝑛𝑖=1𝑛        (1) 
	RMSE = √∑(𝑝𝑖−𝑟𝑖)2𝑛𝑖=1𝑛       (2) 
	MAE = ∑|pi−ri|𝑛𝑖=1𝑛        (3) 
	Where, i is an index; pi is the predicted value for ith datum; ri is the real value for ith datum; and n is the observation number or sample size (Sanusi et al., 2013). The definition of the data set consists of a sequence of operations; the transmission functions are first assigned to a network layer to identify the input signals, and then the appropriate weight is calculated for the output signal. Logsig, tansig and purelin are the linear transfer functions that are used commonly in Matlab software. Accor
	𝐿𝑜𝑔𝑠𝑖𝑔(𝑛)= 11+𝑒−𝑛         (4) 
	𝑇𝑎𝑛𝑠𝑖𝑔(𝑛)= 2(1+𝑒(−2𝑛))−1         (5) 
	𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝑛)=𝑛         (6) 
	Five different MLP models were designed to estimate blue-green algae accumulation based on fluorescence values (Table 1). The first four models contained air temperature and water temperature data since these two parameters are important factors in the lake environment that promote algal growth (Fu et al., 2012; Wei et al., 2001). 
	Table 1. MLP models for estimation of blue-green algae fluorescence, a proxy for a harmful algal bloom (HAB). 
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	Note: The units are: P (μg/L), N (mg/L), chl-a (chlorophyll-a, relative fluorescence units, RFU), air temperature (℃), water temperature (℃), turbidity nephelometric turbidity units (NTU), wind speed (m/s), and HAB stands for blue-green algae fluorescence (RFU). MLP: Multilayer perceptron. 
	 
	Table 2. Network structure used in MLP models for both training and testing data sets. 
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	Note: MLP: Multilayer perceptron. The table explains five different MLP models with their network structures. First number represents the number of input parameters and the last number, which is 1, represents the output parameter. The other one or sometimes two numbers between first and second numbers are the hidden layer structures.  
	All five MPL models were divided into their network structure as presented in Table 2. There were only 8, 5, 4, and 3 different inputs applied in this study. Some of the network structures had one hidden layer, whereas others had more. Commonly, MLP models contain several layers of neurons in their network structure and each neuron receives input data. The input layer does not have any mission about calculation or computation in the neural structure, its role is transferring the input vector to the network 
	vector. The input and output vectors in the system represent the inputs and the output of the MLP models and they can be represented as single vectors (Gardner and Dorling, 1998).  
	RESULTS AND DISCUSSION 
	Blue-green algae fluorescence was estimated using five different MLP models (Table 1) with various network structures (Table 2) in each model and only the best estimation models were presented in this study. The lake parameters for the MLP models were selected based on the lake’s environmental, ecological, and climatic conditions. Among all the MLP models, the highest R2 values (≤0.98) for both training and testing data sets were obtained by MLP1 model, which used eight input parameters to stimulate HAB occ
	Among all the MLP models, the highest coefficient of determination values (≤0.98) for both training and testing data sets were obtained at MLP1 model, which used eight input parameters to stimulate HAB occurrence in Lake Erie as shown in the Figure 2a and b and in the  
	Table 3. The best learning algorithm was LM and the best network structure was 8-10-15-1 for the eight input parameters. The best ANN transfer functions of tansig-tansig-purelin for both training and testing data sets were also observed in 8-10-15-1 network structures. The detailed of training and testing results for eight input parameters for MLP1 models are presented at Table A2 and A3. In general, good performance was achieved as indicated by small values of RMSE, MBE, and MAE as well as large values of 
	Even though eight input structures showed the best estimation of blue-green algae fluorescence, this model might not be feasible in real-world applications since it will be time consuming and costly to obtain all eight parameters. Hence, three, four, and five input parameters were tested as well in this study. 
	Table 3. The summary of MLP1, MLP2 and MLP3 model statistics for training and testing data set.  
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	Note: [LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient backpropogation; SCG, scaled conjugate gradient; MBE, mean bias error; MAE, mean absolute error; RMSE, root mean square error; R2, coefficient of determination]. MLP: Multilayer perceptron. Bold numbers were selected as the best results and their figures were presented in this study. Bold numbers were selected as the best results and their figures were presented in this study. 
	 
	Figure
	Figure 2. MLP1 model for measured and estimated blue-green algae fluorescence, as a surrogate for harmful algal blooms (HAB) (a) training and (b) testing data sets (MLP: Multilayer perceptron, LM: Levenberg-Marquardt). 
	Table 3 shows the best estimation of MLP modeling results for five and four input parameters (MLP2 and MLP3) using five different transfer functions. Five different learning algorithms were applied, and the best estimations of blue-green algae fluorescence were obtained at LM and BR algorithm with 0.89 R2 values in both algorithms. Only the selected algorithms were presented in Table 3 and Figure 3 for both training and testing data sets. LM algorithm was one of the fastest medium-sized feedforward algorith
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	Figure 3. MLP2 model (a) training and (b) testing data sets; MLP3 model (c) training and (d) testing data sets (MLP: Multilayer perceptron, LM: Levenberg-Marquardt). 
	Figure 3. MLP2 model (a) training and (b) testing data sets; MLP3 model (c) training and (d) testing data sets (MLP: Multilayer perceptron, LM: Levenberg-Marquardt). 
	Two sets of three input parameters were designed (MLP4 and MLP5) to determine the best blue-green algae fluorescence estimation although the network structures and transfer algorithms used are the same (Table 4). In MLP4, the input factors are air temperature, water temperature and wind speed while in MLP5, the input factors are phosphorus, nitrogen and chl-a. In both models, the training and testing modeling results for the LM and BR learning algorithms are similar and only the LM algorithm was presented i
	Optimal amounts of nutrients are important to support aquatic life; however, in high concentrations they can be detrimental. This is supported in the research where natural and/or anthropogenic nutrient over enrichment of water body promotes proliferation of HABs (Paerl and Huisman, 2009); different type of HABs including cyanobacteria, chlorophytes, and cryptophytes grew well under nutrient addition to a lake (Lake Taihu, China); whereas diatoms were moderately stimulated by the nutrient loading (Paerl et 
	The coefficient of determination (R2) values of the MLP5 model (nutrient and chlorophyll inputs) were low (0.46 and 0.72) in training and testing data sets, respectively. Overall, the amount of phosphorous in the lake was low, in microgram per liter level. Out of 13,300 data points for phosphorous (concentrations), the values of about 900 data points were less than 1.0 μg/L, (Fig. A1). About 7,100 phosphorous data points were under 10.0 μg/L and there were only 450 data points in between 100 and 146 μg/L. S
	Table 4. The summary of MLP4 and MLP5 model statistics for training and testing data set. 
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	CONCLUSIONS 
	In this study, five different Multilayer perceptron (MLP) models with five different activation functions including LM, BR, CGF, RP, and SCG were developed to estimate blue-green algae fluorescence as a surrogate for the occurrence of HABs in western Lake Erie. The best estimation of blue-green algae fluorescence was achieved using eight different input parameters, which were phosphorus, nitrogen, chlorophyll-a, air temperature, water temperature, turbidity, wind speed, and pH (MLP1 model). Two of the model
	Phosphorus, chlorophyll-a, and nitrogen input parameters provided weak correlation (MLP5) even though, nutrients and algal proliferation tend to correlate in many systems 
	(Carpenter et al., 1998). However, having more than 2 years’ data might give better estimation using nutrient parameters. Overall, the ANN modeling approach described here proved that, developing and implementing MLP models to provide accurate forecasting of blue-green algae fluorescence depends on appropriate and representative data measurements in the lake environment. Determining physical, ecological, biological and chemical parameters of the lake would improve the forecast capability of the model. Harmf
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	APPENDIX 
	 
	Table A1. Statistical analysis of the data used to run Multilayer perceptron model  
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	Span


	Air Temperature, ˚C 
	Air Temperature, ˚C 
	Air Temperature, ˚C 

	18.95 
	18.95 

	1.89 
	1.89 

	32.56 
	32.56 

	0.05 
	0.05 

	5.44 
	5.44 

	-0.19 
	-0.19 

	-0.63 
	-0.63 


	TBody
	TR
	Span


	Water Temperature, ˚C 
	Water Temperature, ˚C 
	Water Temperature, ˚C 

	21 
	21 

	10.83 
	10.83 

	28.21 
	28.21 

	0.04 
	0.04 

	4.28 
	4.28 

	-0.87 
	-0.87 

	-0.6 
	-0.6 


	TBody
	TR
	Span


	Turbidity, NTU 
	Turbidity, NTU 
	Turbidity, NTU 

	17.93 
	17.93 

	1.22 
	1.22 

	208.8 
	208.8 

	0.23 
	0.23 

	24.54 
	24.54 

	5.2 
	5.2 

	2.31 
	2.31 


	TBody
	TR
	Span


	Wind Speed, m/s 
	Wind Speed, m/s 
	Wind Speed, m/s 

	5.31 
	5.31 

	0.22 
	0.22 

	14.24 
	14.24 

	0.02 
	0.02 

	2.5 
	2.5 

	0.14 
	0.14 

	0.62 
	0.62 


	TBody
	TR
	Span


	pH 
	pH 
	pH 

	8.42 
	8.42 

	7.52 
	7.52 

	9.39 
	9.39 

	0 
	0 

	0.33 
	0.33 

	-0.64 
	-0.64 

	0.28 
	0.28 


	TBody
	TR
	Span


	Blue-Green Algae, RFU 
	Blue-Green Algae, RFU 
	Blue-Green Algae, RFU 

	0.36 
	0.36 

	0 
	0 

	2.59 
	2.59 

	0 
	0 

	0.32 
	0.32 

	4.06 
	4.06 

	1.72 
	1.72 


	Span
	 
	 
	 
	[g/L, micrograms per liter; mg/L, milligrams per liter; RFU, relative fluorescence units; ˚C, degrees Celsius; NTU, nephelometric turbidity units; m/s, meters per second].  
	 
	Table A2. Training data set for the Multiplayer perceptron (MLP)1 model.  
	Table
	TBody
	TR
	Span
	Network structure 
	Network structure 

	Activation 
	Activation 

	LM 
	LM 

	BR 
	BR 

	CGF 
	CGF 

	RP 
	RP 

	SCG 
	SCG 


	TR
	Span
	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 

	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 

	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 

	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 

	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 


	TR
	Span
	8-10-1 
	8-10-1 

	Tansig-purelin 
	Tansig-purelin 

	0 
	0 

	0.04 
	0.04 

	0.05 
	0.05 

	0.95 
	0.95 

	0.01 
	0.01 

	0.05 
	0.05 

	0.07 
	0.07 

	0.92 
	0.92 

	0.01 
	0.01 

	0.06 
	0.06 

	0.08 
	0.08 

	0.88 
	0.88 

	0.01 
	0.01 

	0.06 
	0.06 

	0.09 
	0.09 

	0.88 
	0.88 

	0.01 
	0.01 

	0.05 
	0.05 

	0.07 
	0.07 

	0.91 
	0.91 


	TR
	Span
	Logsig-purelin 
	Logsig-purelin 

	0 
	0 

	0.04 
	0.04 

	0.05 
	0.05 

	0.96 
	0.96 

	0 
	0 

	0.04 
	0.04 

	0.05 
	0.05 

	0.95 
	0.95 

	0.01 
	0.01 

	0.07 
	0.07 

	0.1 
	0.1 

	0.84 
	0.84 

	0.01 
	0.01 

	0.06 
	0.06 

	0.09 
	0.09 

	0.86 
	0.86 

	0 
	0 

	0.07 
	0.07 

	0.1 
	0.1 

	0.83 
	0.83 


	TR
	Span
	8-12-1 
	8-12-1 

	Tansig-purelin 
	Tansig-purelin 

	0 
	0 

	0.04 
	0.04 

	0.05 
	0.05 

	0.95 
	0.95 

	0 
	0 

	0.04 
	0.04 

	0.06 
	0.06 

	0.95 
	0.95 

	0.01 
	0.01 

	0.06 
	0.06 

	0.09 
	0.09 

	0.86 
	0.86 

	0 
	0 

	0.06 
	0.06 

	0.08 
	0.08 

	0.89 
	0.89 

	0 
	0 

	0.06 
	0.06 

	0.08 
	0.08 

	0.89 
	0.89 


	TR
	Span
	Logsig-purelin 
	Logsig-purelin 

	0 
	0 

	0.04 
	0.04 

	0.06 
	0.06 

	0.94 
	0.94 

	0 
	0 

	0.04 
	0.04 

	0.05 
	0.05 

	0.96 
	0.96 

	0.01 
	0.01 

	0.06 
	0.06 

	0.09 
	0.09 

	0.87 
	0.87 

	0 
	0 

	0.06 
	0.06 

	0.07 
	0.07 

	0.91 
	0.91 

	0 
	0 

	0.06 
	0.06 

	0.08 
	0.08 

	0.9 
	0.9 


	TR
	Span
	8-15-1 
	8-15-1 

	Tansig-purelin 
	Tansig-purelin 

	0 
	0 

	0.03 
	0.03 

	0.05 
	0.05 

	0.96 
	0.96 

	0 
	0 

	0.03 
	0.03 

	0.04 
	0.04 

	0.97 
	0.97 

	0 
	0 

	0.05 
	0.05 

	0.07 
	0.07 

	0.91 
	0.91 

	0.01 
	0.01 

	0.08 
	0.08 

	0.11 
	0.11 

	0.81 
	0.81 

	0 
	0 

	0.06 
	0.06 

	0.08 
	0.08 

	0.9 
	0.9 


	TR
	Span
	Logsig-purelin 
	Logsig-purelin 

	0 
	0 

	0.04 
	0.04 

	0.05 
	0.05 

	0.96 
	0.96 

	0 
	0 

	0.04 
	0.04 

	0.05 
	0.05 

	0.96 
	0.96 

	0.01 
	0.01 

	0.07 
	0.07 

	0.09 
	0.09 

	0.86 
	0.86 

	0 
	0 

	0.05 
	0.05 

	0.07 
	0.07 

	0.91 
	0.91 

	0 
	0 

	0.05 
	0.05 

	0.07 
	0.07 

	0.92 
	0.92 


	TR
	Span
	8-10-15-1 
	8-10-15-1 

	Tansig-tansing-purelin 
	Tansig-tansing-purelin 

	0 
	0 

	0.02 
	0.02 

	0.03 
	0.03 

	0.98 
	0.98 

	0 
	0 

	0.02 
	0.02 

	0.03 
	0.03 

	0.98 
	0.98 

	0 
	0 

	0.06 
	0.06 

	0.09 
	0.09 

	0.87 
	0.87 

	0 
	0 

	0.06 
	0.06 

	0.08 
	0.08 

	0.89 
	0.89 

	0 
	0 

	0.05 
	0.05 

	0.07 
	0.07 

	0.91 
	0.91 


	TR
	Span
	Tansig-logsig-purelin 
	Tansig-logsig-purelin 

	0 
	0 

	0.02 
	0.02 

	0.03 
	0.03 

	0.98 
	0.98 

	0 
	0 

	0.02 
	0.02 

	0.03 
	0.03 

	0.98 
	0.98 

	0.01 
	0.01 

	0.04 
	0.04 

	0.06 
	0.06 

	0.94 
	0.94 

	0.01 
	0.01 

	0.05 
	0.05 

	0.07 
	0.07 

	0.91 
	0.91 

	0 
	0 

	0.05 
	0.05 

	0.07 
	0.07 

	0.91 
	0.91 




	[LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient backpropogation; SCG, scaled conjugate gradient; MBE, mean bias error; MAE, mean absolute error; RMSE, root mean square error; R2, coefficient of determination]. Bold numbers were selected as the best results and their figures were presented in this study. 
	 
	  
	Table A3. Testing data set for the Multilayer perceptron (MLP) model. 
	Table
	TBody
	TR
	Span
	Network structure 
	Network structure 

	Activation 
	Activation 

	LM 
	LM 

	BR 
	BR 

	CGF 
	CGF 

	RP 
	RP 

	SCG 
	SCG 


	TR
	Span
	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 

	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 

	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 

	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 

	MBE 
	MBE 

	MAE 
	MAE 

	RMSE 
	RMSE 

	R2 
	R2 


	TR
	Span
	8-10-1 
	8-10-1 

	Tansig-purelin 
	Tansig-purelin 

	-0.01 
	-0.01 

	0.06 
	0.06 

	0.08 
	0.08 

	0.94 
	0.94 

	-0.01 
	-0.01 

	0.07 
	0.07 

	0.09 
	0.09 

	0.93 
	0.93 

	-0.01 
	-0.01 

	0.11 
	0.11 

	0.15 
	0.15 

	0.83 
	0.83 

	-0.01 
	-0.01 

	0.10 
	0.10 

	0.14 
	0.14 

	0.85 
	0.85 

	-0.02 
	-0.02 

	0.10 
	0.10 

	0.13 
	0.13 

	0.87 
	0.87 


	TR
	Span
	Logsig-purelin 
	Logsig-purelin 

	-0.01 
	-0.01 

	0.06 
	0.06 

	0.08 
	0.08 

	0.95 
	0.95 

	0.00 
	0.00 

	0.06 
	0.06 

	0.08 
	0.08 

	0.95 
	0.95 

	-0.01 
	-0.01 

	0.10 
	0.10 

	0.13 
	0.13 

	0.87 
	0.87 

	-0.01 
	-0.01 

	0.11 
	0.11 

	0.15 
	0.15 

	0.83 
	0.83 

	-0.01 
	-0.01 

	0.11 
	0.11 

	0.16 
	0.16 

	0.80 
	0.80 


	TR
	Span
	8-12-1 
	8-12-1 

	Tansig-purelin 
	Tansig-purelin 

	-0.01 
	-0.01 

	0.06 
	0.06 

	0.08 
	0.08 

	0.94 
	0.94 

	-0.01 
	-0.01 

	0.07 
	0.07 

	0.09 
	0.09 

	0.94 
	0.94 

	-0.01 
	-0.01 

	0.11 
	0.11 

	0.16 
	0.16 

	0.80 
	0.80 

	-0.01 
	-0.01 

	0.10 
	0.10 

	0.13 
	0.13 

	0.87 
	0.87 

	-0.01 
	-0.01 

	0.09 
	0.09 

	0.13 
	0.13 

	0.87 
	0.87 


	TR
	Span
	Logsig-purelin 
	Logsig-purelin 

	-0.01 
	-0.01 

	0.07 
	0.07 

	0.09 
	0.09 

	0.94 
	0.94 

	-0.01 
	-0.01 

	0.06 
	0.06 

	0.07 
	0.07 

	0.96 
	0.96 

	-0.01 
	-0.01 

	0.09 
	0.09 

	0.12 
	0.12 

	0.88 
	0.88 

	-0.01 
	-0.01 

	0.08 
	0.08 

	0.11 
	0.11 

	0.90 
	0.90 

	-0.01 
	-0.01 

	0.09 
	0.09 

	0.12 
	0.12 

	0.89 
	0.89 


	TR
	Span
	8-15-1 
	8-15-1 

	Tansig-purelin 
	Tansig-purelin 

	0.00 
	0.00 

	0.05 
	0.05 

	0.07 
	0.07 

	0.96 
	0.96 

	-0.01 
	-0.01 

	0.05 
	0.05 

	0.07 
	0.07 

	0.96 
	0.96 

	-0.01 
	-0.01 

	0.08 
	0.08 

	0.11 
	0.11 

	0.91 
	0.91 

	-0.02 
	-0.02 

	0.11 
	0.11 

	0.15 
	0.15 

	0.84 
	0.84 

	-0.01 
	-0.01 

	0.09 
	0.09 

	0.12 
	0.12 

	0.89 
	0.89 


	TR
	Span
	Logsig-purelin 
	Logsig-purelin 

	0.00 
	0.00 

	0.06 
	0.06 

	0.08 
	0.08 

	0.95 
	0.95 

	0.00 
	0.00 

	0.06 
	0.06 

	0.08 
	0.08 

	0.95 
	0.95 

	-0.02 
	-0.02 

	0.10 
	0.10 

	0.14 
	0.14 

	0.85 
	0.85 

	-0.01 
	-0.01 

	0.08 
	0.08 

	0.11 
	0.11 

	0.90 
	0.90 

	-0.01 
	-0.01 

	0.07 
	0.07 

	0.10 
	0.10 

	0.91 
	0.91 


	TR
	Span
	8-10-15-1 
	8-10-15-1 

	Tansig-tansing-purelin 
	Tansig-tansing-purelin 

	0.00 
	0.00 

	0.04 
	0.04 

	0.05 
	0.05 

	0.98 
	0.98 

	0.00 
	0.00 

	0.04 
	0.04 

	0.06 
	0.06 

	0.97 
	0.97 

	-0.01 
	-0.01 

	0.08 
	0.08 

	0.13 
	0.13 

	0.88 
	0.88 

	-0.01 
	-0.01 

	0.07 
	0.07 

	0.09 
	0.09 

	0.93 
	0.93 

	-0.01 
	-0.01 

	0.08 
	0.08 

	0.10 
	0.10 

	0.93 
	0.93 


	TR
	Span
	Tansig-logsig-purelin 
	Tansig-logsig-purelin 

	0.00 
	0.00 

	0.04 
	0.04 

	0.06 
	0.06 

	0.98 
	0.98 

	0.00 
	0.00 

	0.04 
	0.04 

	0.05 
	0.05 

	0.98 
	0.98 

	-0.01 
	-0.01 

	0.06 
	0.06 

	0.09 
	0.09 

	0.94 
	0.94 

	-0.01 
	-0.01 

	0.07 
	0.07 

	0.09 
	0.09 

	0.94 
	0.94 

	-0.01 
	-0.01 

	0.07 
	0.07 

	0.10 
	0.10 

	0.92 
	0.92 




	[LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient backpropogation; SCG, scaled conjugate gradient; MBE, mean bias error; MAE, mean absolute error; RMSE, root mean square error; R2, coefficient of determination]. Bold numbers were selected as the best results and their figures were presented in this study. 
	 
	 
	 



